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Abstract-The Giesekus design of Taylor’s four-roll mill has been restored and is here used in novel flow 
visualizations of both pulsating and monotonously increasing strains. The particle movement paths and progressive 
deformation patterns visualized in these physical experiments are in agreement with those previously calculated 
analytically and constructed graphically. The progressive deformation of passive material markers is guided by 
flowlines. Circular flowlines accommodate rigid-body rotations without deformation. Elliptical flowlines result in 
pulsating strains. The maximum strain occurs when material particles, which were initially at the short axis of the 
elliptical flowlines, reach the long axis of the flow patterns. Monotonically increasing strains occur when flowlines 
are hyperbolic. The insight thus gained is extrapolated to suggest practical methods and assumptions that allow the 
reconstruction of particle movement paths from deformation features commonly observed in rocks. 0 1998 
Published by Elsevier Science Ltd. 

INTRODUCTION 

Ductile deformation structures observed in rocks may be 
studied quantitatively by mapping the regional distribu- 
tion of finite strain patterns. The formation of such strain 
patterns is the result of the relative movement of rock 
particles. Better knowledge of the particle movements 
would be useful because of the theoretical relationship 
between the flow patterns, the stress orientation and the 
direction of boundary displacement as discussed in detail 
elsewhere (Weijermars, 1993a). The problem with finding 
particle displacement paths or streamlines that guided the 
deformation patterns exposed in rocks is that stress 
orientation, direction of boundary displacement and 
particle movement paths themselves are commonly not 
preserved. Therefore, it is important to investigate how 
strain patterns relate to particle movement paths or 
streamlines in theory and experiment. This provides 
techniques to constrain the approximate orientation of 
the streamlines that may have led to the deformation 
patterns recorded in rocks. A new contribution to such 
attempts is briefly outlined here. The methods and 
approach followed are complementary to related work 
by Passchier and Simpson (1986), Masuda and Ando 
(1988), Hanmer and Passchier (199 l), Simpson and De 
Paor (1993), Jiang and White (1995), Masuda et al. 
(1995a,b) and Tikoff and Fossen (1995). 

Graphically, homogeneous deformation in planar 
flows can be represented by the progressive distortion of 
a passive unit circle into ellipses of increasing axial ratios. 
Physically, the progressive deformation of such strain 
circles is controlled by the particle movement paths. 
Theoretical investigations have demonstrated how 
hyperbolic flow patterns cause homogeneous deforma- 
tion with progressive distortion of the strain ellipse 
(Ramberg, 1975a,b). The orientation of the principal 
stress axes and the relationships between finite strain, 

viscosity and strain rate have been elaborated for the full 
range of hyperbolic flow patterns (Weijermars, 1991). 
Another class of homogeneous deformation, distin- 
guished on the basis of theoretical arguments, is con- 
trolled by elliptical streamlines which cause pulsating 
strains (Ramberg, 1975a,b). The rate of pulsation of the 
strain cycle can be quantified for competent inclusions 
using the viscosity contrast between the inclusion and the 
host rock, using various stress orientations (Weijermars, 
1993b, 1997a). 

Examples of homogeneous progressive deformation 
for both types of homogeneous flows (i.e. hyperbolic and 
elliptical) are illustrated qualitatively in Fig. 1. The 
occurrence of each particular flow pattern critically 
depends upon the kinematic vorticity number, a fluid 
mechanical number defined, for two-dimensional defor- 
mations, as the ratio of half the vorticity and the shear 
strain rate (Truesdell, 1953; Means et al., 1980; Weijer- 
mars, 1991). In summary, monotonically increasing 
strains occur when 01 Wk( 1 and pulsating strains occur 
when 1~ W, < CC. Limiting cases are pure shear ( W, = 0), 
simple shear (W, = 1) and rigid-body rotation (W, = co). 
Figure 2 illustrates quantitatively how the spectrum of 
flowlines for homogeneous plane strains is controlled by 
the values of (half the) vorticity and the strain rate. 

Pure shear and simple shear boxes have been used 
extensively in scaled and unscaled models of mechanical 
instabilities with geological significance (folds, mullions, 
boudins, etc.). These shear boxes constrain the particle 
paths by the movement of the walls enclosing the mode1 
substance. An alternative approach constrains the 
particle movement paths using a Taylor mill comprising 
four rollers, a design made first by Sir Geoffrey Taylor, 
the late fluid mechanicist. The advantage of this 
approach is that a single apparatus allows modelling, 
not only of pure shear and simple shear deformations, 
but of all possible cases of plane, homogeneous deforma- 
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Fig. I. Examples of homogeneous progressive deformation of passive strain markers in plane strain by the following particle 
movement paths (after Weijermars, 1988a): (a) pure shear deformation; (b) non-pulsating deformation with components of 

pure and simple shear superposed; (c) simple shear deformation; (d)-(f) pulsating strain; and (g) rigid-body rotation. 

tion. Examples of the simultaneous visualization of strain to the geometry of streamlines (and to a parameter 
particle movement paths and progressive deformation for normalized time, see later, equations (5a)--(5d), 
are shown here in physical laboratory experiments with a (6a))(6d)). However, methods to reconstruct streamlines 
Taylor mill. or flowlines from deformation patterns observed in rocks 

The progressive deformation of passive markers in are still limited. Particle movement paths occurring in 

pulsating and non-pulsating flow regimes in a Taylor rocks coincide with streamlines because inertia, which 
mill obeys analytical expressions which relate the finite may cause a difference between particle movement paths 
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Fig. 2. Flow spectrum of homogeneous, plane flow, including those 
leading to pulsating and non-pulsating deformations. The occurrence of 
these flow paths critically depends on the kinematic vorticity number, 
W,, the ratio of half the vorticity and the strain rate. Units along the 
axes are arbitrary and the frequency of pulsation, P, is in cycles per time 

unit (after Weijermars, 1988a). 

and streamlines, is absent in solid-state creep of crystal- 
line rocks (Weijermars and Schmeling, 1986). The 
differences and similarities between particle paths and 
streamlines (or flowlines) are concisely explained in basic 
textbooks on fluid mechanics (e.g. Tritton, 1988). In two- 
dimensional projections, any flowline represents a sur- 
face normal to the plane of view across which material 
transport does not occur. The flowline, thus, is part of an 
imaginary, impermeable surface. Some practical hints on 
ways to infer streamlines (or flowlines) from field 
structures are outlined in the final section of this paper. 

APPARATUS 

The entire suite of two-dimensional flow patterns 
resulting in homogeneous plane deformation structures 
can be made visible in an elegant apparatus first designed 
in a study of the fluid mechanics of drop deformation and 
burst by Taylor (1879). Modern Taylor-mill designs have 
been made by Giesekus (1962) Fuller and Lea1 (198 1) 
and Bentley and Lea1 (1986), the latter two also in 
connection with studies of drop burst. The four-roll mill 
built by Giesekus and used in his classical study 
(Giesekus, 1962) was kindly made available to the 
author. The apparatus comprises four rollers rotating 
about vertical axes causing flow in an ambient fluid. The 
flow patterns that are studied occur in the central space 
between the rollers (Fig. 3). The pattern of flow is 
principally controlled by the relative speed of the rollers 
and by their relative direction of rotation. 

For the present study, the mill was refurbished with 
two independent electric motors and gearboxes. The four 
rollers each occupy a corner of an imaginary square (Fig. 

Fig. 3. Overview of the Taylor mill used here 

4a-d). The ribs of the square are 95 mm apart, the radius 
of the rollers is 28 mm and the roller height is 56 mm. The 
rollers are mounted on a mobile frame which allows 
lowering of the rollers into a 250 x 250 x 50 mm Perspex 
container. The container is filled with glycerol, a 
transparent commercial fluid with density of 
1261 kg m-s, and a dynamic viscosity of 1 Pa s at 24°C. 
The four rollers are cross-wise coupled by rubber-belts, 
and each pair is driven by an independent electric motor. 
The motors were custom-made, and each of them is 
controlled by a lo-speed gearbox enabling selection of 

a)c=l b) 5 = 0.3 
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Fig. 4. Principle sketch of Taylor’s four-roll mill in top view. Sense of 
roller rotation and their relative speed determines the geometry of the 
flowlines simulated: (a) pure shear; (b) oblique flow; (c)elliptical particle 

paths; and (d) rigid-body rotation. 
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integer rates between 1 and 10 rotations per min (rpm). 
The fluid container used in our study was illuminated 
from below by a 1000 W lamp and photographed from 
above by a tripod-mounted Nikon camera, loaded with 
Ektachrome 100 ASA daylight diapositive film, with 
shutter speed set at l/250 s and diaphragm at 8. The 
flow was visualized using red and green dyes on a glycerol 
basis, commercially available as liquid food colourants. 
An alternative approach visualizes the flow by alignment 
of solid carbon particles suspended in the fluid, which 
yields flow patterns of a coarser resolution with no 
apparent instability near the stagnation points (Giesekus, 
1962). 

Figure 5(ad) shows examples of the basic flow types 
observed in the Taylor mill by fixing the speed ratio of the 
four rollers (according to [ in equation (2a) below) and 
adjusting the roller placement if necessary. Minor 
deviations from the ideal flow patterns occur near the 
central stagnation point of Fig. 5(a), where the dye lines 
in the direction of the shortening flow tend to fold, thus 
indicating that there exists a slight viscosity contrast 
between the various liquids used in the flow visualization. 
The dye lines in Fig. 5(ad) closely follow the flowlines 
and were created by stretching dye markers, inserted by 
means of syringes. 

The flow patterns produced in a Taylor mill can be 
characterized by the following stream function (Weijer- 
mars, 1991): 

ICI = (r/2)(z2 - (x2) (1) 

where [ is a dimensionless scaling parameter characteriz- 
ing the flow pattern developing with shear strain rate 7. 
The coordinate system ZX is as defined in Fig. 6(a). The 
scaling parameter [ is controlled by the roller speeds 
(Bentley and Leal, 1986): 

c = -(aI + a,>/@2 + a41 GW 

with angular rotation rates fir, . . . . fl4 defined as in Fig. 4. 
Familiar cases of progressive deformation occur for 
[= - 1 (pure rotation and no strain, W, = co), i =0 
(simple shear, W, = 1) and [ = 1 (pure shear, I+‘, = 0). 

In the case of hyperbolic flowlines (Fig. 6a), typical for 
non-pulsating strains, [ is related to the acute asymptote 
angle, CI, which is the angle between the flow apophyses 
(Fuller and Leal, 1981): 

[ = tan2(a/2) (2b) 

The major principal stress, 71, in such flows is oriented at 
21x from the X-axis coinciding with one of the flow 
asymptotes or flow apophyses. In the case of elliptical 
flowlines (Fig. 6b), typical for pulsating strains, i is 
related to the axial ratio of the short and the long axis of 
elliptical streamlines (Fuller and Leal, 1981): 

< = -(h/a)2 (2c) 

The scalar [, used here to characterize particle move- 
ment paths, has been related to the kinematic vorticity 

number, W,, elsewhere (Weijermars, 1991): 

wk = (1 - i)/(l + i> W 

The mathematical solution of [ in terms of wk is: 

[ = (1 - wk)2/( w; - 1) (3b) 

The major principal strain rate, t’t , in each experiment 
can be obtained by measuring the velocity of the particles 
and substituting the observed velocities in the theoretical 
particle path equations. Once the strain rate is fixed, the 
finite strain after a particular time, t, can be calculated 
from the deformation tensor equations (5a)(5d), 
(6a)-(6d) outlined below, using the normalized time 
R, (= @It). Various formulations for the particle path 
equations for hyperbolic flows are available from the 
literature: Giesekus (1962, equation 6) Ramberg (1975a, 
equation 38 or 1975b, equation 43) McKenzie (1979, 
equation 28) Fuller and Lea1 (1981, equation 16) 
Bentley and Lea1 (1986, equations 44 and 45) and 
Weijermars (1991, equations 15 and 16aad). Similarly, 
elliptical particle path equations have been derived by 
Giesekus (1962, equation lo), Ramberg (1975a, equation 
72 or 1975b, equation 52) McKenzie (1979, equation 30) 
Fuller and Lea1 (1981, equation 19) and Weijermars 
(1993b, equations 6 and 7a-d). 

DEFORMATION THEORY 

The analytical expressions given below enable the 
computation of the finite strain and rotation of a strain 
ellipse after any arbitrary time of flow in a Taylor mill. 
The deformation tensor, FL,, if expressed in time-depen- 
dent terms, provides the parameters for a coordinate 
transformation describing the migrated positions, xi, of 
material particles with initial positions, x;: 

x, = F,,x, (4) 

Attention is here confined to plane strains. If the 
coordinate system is fixed in an appropriate orientation 
(see later), only elements F, , , F13, F3, and FX3 may change 
during planar deformation (from initial unit length, 
representing undeformed self-projection of points), Fz2 
retains unit length, and all other tensor components 
remain zero at all times. 

For the present purpose it is most practical to 
formulate the deformation tensor in terms of geometrical 
characteristics of the observed flow patterns. The 
deformation history for monotonically increasing strains 
is fully determined if the angle CI between the two straight 
streamlines or flow asymptotes is known (Fig. 6a) 
(Weijermars and Poliakov, 1993): 

FI 1 = exp( R, sin X) (5a) 

F13 = [exp(R, sin a) - exp(-R, sin x)] cot x (5b) 
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Fig. 6. The deformation tensor of flows valid for the coordinate systems 
as defined here can be determined directly from the flow geometry. 
(a) Monotonically increasing, homogeneous deformation paths can be 
characterized by the angle c( between the two flow asymptotes (also 
termed flow apophyses). See equations (5a)-(5d). The orientation of the 
major principal stress axis, r,, can also be related to a (see Table 1). 
(b) Pulsating strains are controlled by the ellipticity (a/h) of the 

streamlines. See equations (6a)-(6d). 

F33 = exp(- R, sin a) (5d) 

with the normalized time R, resulting from the product of 
principal strain rate, 61 (as determined from the experi- 
ment), and dimensional time, t. The deformation tensor 
elements of equations (5a)-(5d) are valid for a Cartesian 
coordinate system with the X-axis kept parallel to the exit 
flow asymptote, and the Y-axis perpendicular to the 
plane of flow which is in the X-Z plane (Fig. 6a). 

For pulsating or oscillating strains the progressive 
deformation of passive markers is also fully determinable 
from the normalized long axis of the elliptical stream- 
lines, or simply the axial ratio a/b (Fig. 6b) (adapted from 
Weijermars, 1993b): 

F,, =cos R, (ha) 

F13 = (u/b) sin R, (6b) 

Fsi = -(b/a) sin R2 (6~) 

F33 = cos R, ((3 

The physical meaning of the deformation tensor elements 
of equations (5a)-(5d), (6a)-(6d) is illustrated in Fig. 7(a 
& b) for a Cartesian coordinate system such as used in 
Fig. 6(a). Exactly the same dimensions occur for 
pulsating strains when the X-axis used in Fig. 7 coincides 
with the long axis of the elliptical streamline patterns, and 
the Y-axis remains perpendicular to the direction or 
plane of flow, which is in the X-Z plane. 

The stretch history of the long axis of an initial strain 

Fig. 7. Sketches illustrating how deformation tensor elements F, ,, FL3 
and F33 relate to physical dimensions. See text for explanation. 

circle (Fig. 7c) is given here in tensor notation, but has 
appeared in parameter form more than a century ago 
(Thompson and Tait, 1879): 

Si = [0.5(X.+ [K2 - 4(F,lF33 - F~3F3~)2]i’2)]“2 (7a) 

with K = F:, + FT3 + Fz, + F& and tensor elements F, , , 
F13, F3, and F33 (for details see Weijermars, 1991). The 
assumption of plane strain and no volume change implies 
that S3 = 1 /S, . One can see that a rigid-body translation, 
which has tensor elements F, , = F22 = F33 = 1, and F, 3 = 0, 

yields a unit circle with Si = Ss = 1. 
The rotation history of the finite strain ellipse is also 

included in the deformation tensor. The orientation, at 
any time, is specified in terms of the angle 0 between the 
finite strain ellipsoid’s major axis and the X-axis (Fig. 7~): 

8 = 0.5 arctan[(2Fii F3i - 2F13F33)/ 

(Ff, + F:j - F;, - F:3)1. 
(7b) 

Substitution of the Fij values for a unit simple shear, 
which has F13 = 0 and F, , = Fz2 = F33 = 1, and all other 
tensor components equal zero, yields 8 = 3 1.7”, confirm- 
ing the validity of equation (7b). 

STRAIN VISUALIZATION 

The basic flow configurations obtainable in the Taylor 
mill were subsequently used to visualize the progressive 
deformation of passive strain circles marked by a droplet 
of green dye in the centre of the flows. The sequential 
snapshots of Fig. S(a) illustrate the progressive deforma- 
tion of such a strain circle in a pure shear flow ([ = 1, 
W, = 0). The strain ellipse stretches from 1 through to 1.4 
to attain Si = 2 in the lowermost picture. Figure 8(b & c) 
visualizes the development of similar stretches in oblique 
shear flows characterized by [ =0.7 (W, =0.18) and 
< = 0.5 (W, = 0.33) respectively. The green droplet was 
inserted with a syringe at the surface of the glycerine 
basin near the central stagnation point of the flow. The 
stagnation point was determined from the streamline 
patterns of Fig. 5(a-d); any material transport ceases 
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immediately after stopping the rollers. A slight distortion 
of the pre-existing flowlines marked by the red dye 
occurred due to lateral spreading of the green droplet 
upon injection. Subsequently, the green marker was 
deformed after resuming the flow by switching the 
electric motors on again. Surface tension between the 
glycerol dyes and the ambient fluid is negligible. This 
could be inferred from the simple observation that green 
and red dyes stretch into infinitesimally thin lines without 
any droplet formation or failure. In contrast, surface 
tension was one of the critical parameters in the 
experiments by Bentley and Lea1 (1986) leading to 
droplet formation. 

Figure 9(a) features sequential snapshots of an initially 
circular marker straining in the pulsating fashion des- 
cribed previously in theory only (Ramberg, 1975a,b; 
Pfiffner and Ramsay, 1982; Weijermars, 1993b, 1997a). 
The streamline pattern is characterized by [= -0.25 
(I+‘, = 1.67) and the maximum stretch is 1.45. The 
maximum stretch or ellipticity is aligned with the 
extensional asymptote of the flow. In rocks, this pulsating 
strain behaviour occurs in competent viscous inclusions, 
the maximum stretch being determined by the viscosity 
contrast between the inclusion and the host rock 
(Weijermars, 1993b, 1997a). Figure 9(b) effectively 
demonstrates rigid-body rotation or spin of a passive 
circular marker in the centre of circular streamlines with 
[= -1 (wk=cc). 

DISCUSSION 

The above experiments illustrate how material parti- 
cles are transported along streamlines and how progres- 
sive, homogeneous deformation patterns result from 
such particle movements. The orientation of the how 
asymptotes (or flow apophyses) in Taylor-mill experi- 
ments is controlled by the relative roller speed. There are 
no moving rollers inside deforming rocks, but rock 
particles deforming by surface stresses associated with 
displacing boundaries will follow similar streamlines if 
deforming homogeneously (Weijermars, 1993a). 
Although the particle movement paths themselves are 
not directly visible in deformed rocks, this section 
suggests methods to constrain the orientation of flow 
asymptotes from structures in deformed rocks. Mechan- 
ical analysis has previously demonstrated that elliptical 
particle paths cannot occur in rocks of isotropic bulk 
rheology flowing adjacent to a relatively rigid boundary 
(Weijermars, 1993b). Our attention, therefore, will focus 
on ways to reconstruct the orientation of the asymptotes 
of hyperbolic flows only. 

The limiting assumptions made are: (1) homogeneous 
bulk deformation; (2) no volume change; and (3) plane 
deformation. It is sometimes inferred that fixed stream- 
lines require an additional assumption of steady-state 
flow. This is not required as the flow rate may change 
over time. Nonetheless, the ratio of the vorticity and 

strain rate must remain fixed. This condition will 
automatically be fullfilled if the stress (or strain rate) 
axes remain stationary during the deformation. But the 
magnitude of the stress, strain rate and vorticity may all 
vary over time and thus need not be in steady state. 

For hyperbolic flows associated with homogeneous 
bulk deformation, knowledge of the orientation of the 
two flow asymptotes defines the entire flow pattern (Fig. 
6a). It is important to realize that the two flow 
asymptotes are different. One asymptote moves all 
particles toward the stagnation point of the flow (here 
termed the shortening flow asymptote). The other 
asymptote moves all particles away from the stagnation 
point (the extensional flow asymptote). Additionally, one 
of the two flow asymptotes is commonly parallel to the 
slip boundary fixed to the relatively rigid wallrock. If 
such a boundary can be identified, the orientation of the 
other asymptote follows if the angle c( between them can 
be established by some of the field methods explained 
below. 

Figure lO(ae) illustrates the orientation of flow 
asymptotes in practical examples of single competent 
layers deforming in progressive deformation for a range 
of flows. The orientation of the extensional flow 
asymptotes is indicated in Fig. lO(a-e). The shortening 
flow asymptote is horizontal in Fig. lO(d & e), but 
oriented at CI (equal to t/2), measured clockwise from the 
horizontal plane for the deformation in Fig. IO(a & b). 
The flow models of Fig. lO(aae) assume a rigid boundary 
at the base of a deforming volume of rock. In a shear zone 
deforming by simple shear only, this concept of a rigid 
boundary is widely accepted. However, when the 
deformation deviates from simple shear it becomes 
more tenuous (e.g. Sanderson, 1973) and the differential 
shear has to be accommodated by a stretching fault 
(Means, 1989). One objection to the stretching fault 
concept is that faulting is unlikely to be coeval with 
ductile deformation required to form a grain shape fabric 
inside the shear zone. However, the stretching fault itself 
may well be a narrow zone of ductile shear. The amount 
of simple shear could vary laterally as the width of the 
stretching fault changes, in accordance with the observa- 
tions by Simpson (1983). If the shear zone is trunsprrs- 
sional (cf. Sanderson and Marchini, 1984) volume loss 
(e.g. by pressure solution) is likely to occur to help 
accommodate strain compatibility problems between the 
shear zone proper and the stable wallrock. Conversely, 
hydrothermal injection of rock matter such as quartz 
into dilating veins is likely to occur to solve strain 
compatibility problems in tramtensional shear zones. 

Figure 1 l(aae) illustrates hyperbolic steady-state flow 
patterns mostly similar to those controlling the deforma- 
tions in Fig. I O(aae). In all these flows, one of the two flow 
asymptotes coincides with a stable boundary (here 
horizontal) adjacent to the deforming rock volume. 
Again, any differential slip at the boundary is accom- 
modated by a stretching fault (Means, 1989). Grain shape 
fabrics, forming subparallel to the direction of maximum 



Rt 

Rt 
=I 

1 

‘2 

Taylor-mill analogues for patterns of flow in rocks 

Fig. 9. Progressive deformation of initial circle in the Taylor mill: (a) elliptical particle paths with [ = -0.25 (W, = 1.67) and 
the maximum stretch is 1.45; (b) effectively demonstrates rigid-body rotation or spin of a passive circular marker in the centre 

of circular streamlines with c = - 1 (W, = a). 
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Extensional flow 
+ 

asymptote 
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Extensional flow 

Extensional flow 

asymptote 

Fig. IO. Progressive deformation of a unit cube for the major principal stress orientations indicated. The boudinage and 
minor folds seen in the deforming blocks are for active, competent single layers. The stress magnitude and viscosity are such 
that a typical geological strain rate of lOpI4 s-’ occurs, with finite deformation patterns shown here at 2 Ma spacing (after 

Weijermars, 1993~). The orientation of the extensional flow asymptote is discussed in the text. 

stretch as indicated by the extensional flow asymptotes, thickness during deformation. Thinning by pure shear 

may further help to define the orientation of the second j?on~ ([ = - 1 or Wk = 0) can be recognized from sym- 

flow asymptote. Figure 1 l(aac) illustrates a deformation metric folds or symmetric mullions with the enveloping 

zone that has either thinned or maintained a constant surface oriented perpendicular to the deformation zone 
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Streamlines of bulk flow 
relative to stationary wall: 

Deformation patterns: 

Vr, Tl I 
Z 

t 
* 
. 
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Stationary wall 

Stretching fault 

Extensional flow 
asymptote 

* 

undeformed grains , grain shape fabric / 

e Extensional flow 
asymptote 
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Extensional flow 
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Fig. 11. Flowlines and associated homogeneous bulk deformation by the stress orientations c = O”, 30”, 45”, Wand 90” (i.e. 
Wk = 0,0.87, 1,0.34 and 0, as follows from Wk = sin 25, see Table 1). The structures indicated are for active, competent (folds, 
boudins) and incompetent (mullions) single layers. Finite strain portrayed as grain shape fabric is established after 3 Ma for a 
rock deforming at a strain rate of lo-l4 SC’. The direction of maximum stretch is parallel to the the stretching fault or the X- 
direction for principal deviatoric stress orientations o”i5~45”. However, the direction of maximum stretch is not parallel to 
the X-axis but aligned with the orientation of the extensional flow asymptote for deformations where 45” < 5590”. The relative 

velocity vector, V,, of the upper boundary of the deforming volume is parallel to the inclined flow asymptotes. 

boundaries (Fig. 1 la). The tectonic foliation outlined by competent or incompetent single layer parallel to the 

a grain shape fabric may be utilized to infer that the deformation zone boundaries has remained undeformed, 

compressional flow asymptote has remained normal to because the material lines maintain constant length ([ = 0 

the stable wallrock. Simple shear can be recognized if a or W,= 1) (Fig. 1 lc). The angle between the two flow 
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Table 1. Conversion formulae for homogeneous two-dimensional flows and characteristic cases 

Parameter(s) Kinematic vorticity number Taylor-mill scaling parameter Angle between Bow asymptotes 

Prefered symbol(s) 

Application 
Special cases: 

Pure shear 
Simple shear 
Rigid-body rotation 

Defined by 

Required quantities 

Equivalence 

Relationship with stream 
function,* $(x, z) 

Sources 

Wk 

All planar flows 

0 
1 
30 

wk = W/2i, 

Vorticity (w), strain rate (er) 

wk=(l -i)/(l +c) 
wk=cosu 
W,=sin2[ 

(= (I ~ wk)*/(w; - 1) 
i = tan’(ol/2) 
i = ~ (h/a)2 

wk = (%/)lm) sin 25 

W, = cos(tan ‘[(cot2t)is]) 

r=90”-2t 
c( = tan ‘[(cot 25)/a] 
c( = 0.5 tan’(i)” 
c(=coss’ w, 

Wk = [(a’$/&*) + (a2$/aX2)]/ (1, = (y/2)(,-‘-[&with shear $ = t;r (xz sin c( + z2 cos a). with 
[(@/a2) - @$/a~~)] strain rate ;j principal strain rate L;, 

Truesdell, 1953; Means e/ rrl., 
1980; Weijermars, 1991 

Fuller and Leal, 1981; Bentley 
and Leal, 1986; Weijermars, 
199 1; this paper 

Weijermars, 1991, 1993a; 
Weijermars and Poliakov, 1993 

All planar flows 

0 
-1 

i = @I + %M% + Q‘d 
Roller rotation rates (0,) 

x 

Hyperbolic flows 

90” 
0’ 
Not possible 

c1 only 

Angle between two flows 
asymptotes (a) 

*For a specific flow orientation in Cartesian XZ space. 

asymptotes is effectively reduced to zero, so that they 
unite in the horizontal plane. The angle between the 
asymptotes of thinning flows intermediate between pure 
and simple shear (- 1 < c < 0 or 0 < IV, < 1) can be further 
constrained using the deformation patterns of single 
competent layers of different orientations (Dennis and 
Secor, 1990; Weijermars, 1993~). 

If the grain shape fabric is not parallel, but clearly 
inclined at angles larger than 45” to the boundaries of the 
deformation zone, it can be concluded that the deforma- 
tion zone has thickened (Fig. 1 Id & e). Another 
assumption made here is that all grain shape fabrics will 
eventually rotate toward the plane occupied by the 
extensional flow asymptotes. This assumption is different 
to that of Sanderson (1974) and Coward (1980), who also 
argued that shear zones could deviate from simple shear 
but assumed that the grain shape fabrics studied record 
only a small increment of the deformation. Conse- 
quently, the long axis of the related strain ellipse had 
not rotated far away from the major infinitesimal 
stretching axis. In this study grain shapes are assumed 
to progressively rotate toward the infinitesimal stretching 
axis, as illustrated in Fig. 1 l(aae). This also emphasizes 
that ,foliation does not necessarily need to form normal to 
the major principal stress, because the direction of 
maximum stretching is not always perpendicular to the 
major principal stress axis. The stress orientation in Fig. 
11 (a-e) is fixed as illustrated (Weijermars, 1993~). 

Thickening bypure shearjlow (< = - 1 or II’, = 0) can be 
inferred from symmetric folds or symmetric mullions with 
an enveloping surface oriented parallel to the boundaries 
of the deformation zone (Fig. 11 e). The angle between the 

asymptotes of the thickening flows intermediate between 
pureandsimpleshear(-l<<<OorO<Wk<l)can be 
estimated by measuring the angle between the foliation 
trace and the stable boundary of the deformation zone. 
Strain fabrics are closely aligned to the extensional flow 
asymptote for such thickening flows. If the rocks are 
strongly foliated, then the foliation is likely to act as a 
mechanical anisotropy. This anisotropy forces foliated 
rocks to deform by simple shear flow in planes parallel to 
the anisotropy (Weijermars, 1992). If no foliation is 
present in the outcrop, asymmetric folds of single 
competent layers provide another possible source for 
determining the flow asymptote angle. The technique 
outlined here is adapted from a method for estimating the 
orientation of palaeostress axes using asymmetric folds 
adjacent to the Moroccan Border Fault (Weijermars, 
1993a). Figure 7(a & b) illustrates how the normalized 
lengths of a deformed unit volume correspond to the 
deformation tensor components Fi ,, F1 3 and Fx3. Figure 
12(a & b) outlines how these normalized lengths F, , , F, 3 
and F33 can be determined for a practical situation 
involving asymmetric folds formed near a vertical 
detachment surface or stretching fault. F,, follows by 
measuring the arc length L, of the folded competent layer, 
and subsequently normalizing the spacing, L, of axial 
planes as measured along the reference plane: F,, = L/Lo 
(Fig. 12a). In general, folding of the competent layer only 
occurs if F,, < 1 and boudinage (not elaborated here) 
results if F, , > 1. FIX may be calculated from F, , and the 
angle, p, between the detachment surface and the axial 
plane, or any other rotated marker initially perpendicular 
to the detachment surface (Fig. 12b): 
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Table 1 (cont.). Conversion formulae for homogeneous two-dimensional flows and characteristic cases 

Orientation of major 
principal stress (~1) Ellipticity 

Viscosity ratio and stress Anisotropy factor and 
orientation orientation 

t 
Hyperbolic flows 

0” and 90” 
45” 
Not possible 

5 only 

Angle (5) between z, and 
normal to stable boundary 

5 = 45” -(M/2) 
5=0.5 sin-’ Wk 

alb 
Elliptical flows 

Not possible 
alb=m 
a/b=1 

alb 
Long axis (a), 
short axis (6) 

a/b = Kvi/nn) + II/ 
loli/fh)2 - l)“2 
provided 5 = 45” 
a/b = (Wk + l)/(@ - 1)‘12, 
provided t = 45” 

vlhm and 5 
Elliptical flows 

Not possible 
qi/qm = 1 and 5 = 45” 
qi/qrn > 1 (or 00) and 
0”<5<90” 

~i/~rn and 5 

Viscosity of inclusion (vi) 
viscosity of matrix (r& 
stress angle (l) 

q&, = W,, provided 
5=45” 

$ = 61 (xz cos 2t + z2 sin 26), Not available Not available 
with principal strain rate Pt 

Weijermars, 199 1 Weijermars, 199313, 1997a; this Weijermars, 1993b, 1997a 

paper 

hand5 

Anisotropic flows 

r=Oor90”,any6 
6>l(co)and0”<~<90” 
Not possible 

6andc 

Anisotropy factor (6) (= P&~), 
stress angle (4) 

S = cos 2c/[tan(coss’ Wk)] 

((I = (tl /qN)(xz cos 2e + z2 sin 2.$), 
with normal viscosity rlN 

Weijermars, 1992 

Initial orientation 

Final orientation of 
axial danes 

Stretching fault 

F33 =h 
-1 

F13 = F11-1 / tar@ 

Fig. 12. Sketches explaining how the normalized lengths Lo and L, 
the initial and final separation between axial planes, define the 
deformation tensor element F, 1 (= L/Lo) portrayed as a physical 
length in Fig. 7(b). Deformation tensor element Faa is equal to F;,‘; 
Fta follows from Ft 1 and angle /J’ through equation (8b). See text for 

an explanation. 

@a) 

Ft3 = c:/tan B. (8b) 

Combining equation (5b) and equation (8b) yields an 
equation allowing the determination of the asymptote 
angle a using only F, I and p: 

a = arctan[(F:t - 1) tan ~1 + 180”, for FI, < 1 (9) 

Recall that Fll is measured as L/L0 and together with B 
can be measured as indicated in Fig. 12(b). 

Rigid circular inclusions within the deformation zones 
where the bulk flow is hyperbolic can also help to infer the 
orientation of the asymptotes of the bulk flow pattern. 
Much detailed work on rigid inclusions has been 
published recently (Masuda and Ando, 1988; Bjornerud, 
1989; Passchier et al., 1993; Simpson and De Paor, 1993; 
Bjornerud and Zhang, 1995; Masuda et al., 1995a,b; Ten 
Brink and Passchier, 1995; Masuda and Mizuno, 
1996a,b), and the observations below are, of course, 
only complementary to that work. Figure 13(ae) 
illustrates the same streamlines used in Fig. 1 l(aae), but 
now in a reference frame fixed to the centre of a rigid 
inclusion inside the deformation zone. Such inclusions 
will encourage the development of either symmetric 
pressure shadows, or asymmetric winged porphyroblasts. 
Rigid inclusions remain stationary in pure shear defor- 
mation and pressure shadows around them are sym- 
metric. However, if there is a component of simple shear 
involved in the deformation of the host rock ( W, > 0), the 
inclusions tend to rotate. The flow asymptotes will be 
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Streamlines relative to 
rigid inclusion: 

4 

b) IZ 

4 

Deformation patterns: 

Fig. 13. Flowlines relative to rigid circular inclusions with cylinder axis 
parallel to the Y-direction. The bulk flow is similar to that portrayed in 
Fig. ll(a%). Symmetric pressure shadows form for pure shear, and 
asymmetric wings are formed when a component of simple shear is 
involved. The axis of the pressure shadow is parallel to the extensional 

flow asymptote in all cases. 

slightly curved near such inclusions (Fig. 13b), and the 
pressure shadows are typically asymmetric and can be 
used as kinematic indicators. The axis of the wings of the 
inclusions remain subparallel to the extensional flow 
asymptote, which may be either parallel to or inclined to 
the boundary of the deformation zone (Fig. 13b & d). The 
rate of rotation is fastest in simple shear, but the resulting 
asymmetry of the kinematic indicators (Fig. 13~) cannot 
be distinguished from those produced during flow 
involving components of pure shear (Fig. 13b & d). 
Howvver, any grain shape ,foliation aligning Mith the 
extensional,flow asymptote is oblique to the boundary cf 
the deformation zone if transtension has occurred (Fig. 
13d), but parallel to the boundary for transpression (Fig. 
13b). The axis of the pressure shadows align with the 
extensional flow asymptote in all cases illustrated. For 
pure extension normal to the wall of the deformation 

zone (Fig. 13e), any grain shape fabric forms normal to 
the wall and thus helps to distinguish such zones of pure 
extension from pure shortening (Fig. 13a). 

CONCLUSIONS 

The progressive deformation of passive markers in a 
Taylor-mill flow confirms the validity of analytical 
expressions that describe the progressive development 
of finite strains, using parameters based on the geometry 
of the streamlines (i.e. equations (.5a)-(5d), (6a)-(6d)). In 
planar flows, one can distinguish between hyperbolic 
flow patterns and elliptical flow patterns. The hyperbolic 
flow patterns result in monotonically increasing finite 
strains. The elliptical flow patterns cause pulsating finite 
strains. Each flow pattern fixes the deformation history of 
a passive strain marker in a unique fashion. Nomograms 
that quantify the finite strain development for such flow 
patterns at normalized flow times (R,) have been 
published in earlier work: for hyperbolic flows in 
isotropic media (Weijermars, 1991), for hyperbolic flows 
in anisotropic media (Weijermars, 1992), and for ellip- 
tical flows in two (Weijermars, 1993b) and three dimen- 
sions (Weijermars, 1997a). 

The flow patterns themselves can be characterized 
concisely in several ways, using one of the following 
parameters or pairs of parameters: the kinematic vorti- 
city number (IV,), the Taylor-mill scaling parameter (0, 
the flow asymptote angle (r, in hyperbolic flows only), the 
major principal stress axis orientation (t, in hyperbolic 
flows only), the ellipticity of the streamlines (a/b, in 
elliptical flows only), the viscosity ratio (Yinclusion/~matrix, 
in elliptical flows only) and the anisotropy factor (6, in 
anisotropic flows only) together with the bulk stress 
orientation ([). Each of these different parameters may be 
useful for characterizing particular patterns of planar 
flow that guide homogeneous deformations. Table 1 
compiles these dimensionless parameters for flow char- 
acterization according to various specific methods of flow 
engineering and aids the conversion between them. A 
more complete description of flows uses the stream 
function, and the relationship between the various 
parameters and the stream function is included in 
Table 1. 

It can be concluded that theoretical and experimental 
knowledge of the relationship between flowline patterns 
and progressive deformation has progressed signifi- 
cantly. What urgently needs to be explored further is 
how we can reconstruct the flow patterns that have 
governed the development of deformation structures in 
rocks. Such flow patterns are not necessarily homo- 
geneous, especially not if studying large-scale deforma- 
tions. Also, such flows may be three-dimensional rather 
than two-dimensional with respect to flow symmetry. 
Many of the two-dimensional results can be easily 
extrapolated to three-dimensional flows (Weijermars, 
1997a,b). Some hints for constraining two-dimensional 
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flow geometries from rock structures have been outlined 
in the preceeding Discussion section. Additional methods 
have been suggested elsewhere (Passchier and Simpson, 
1986; Hanmer and Passchier, 1991; Simpson and De 
Paor, 1993; Jiang and White, 1995; Masuda et al., 

1995a,b; Tikoff and Fossen, 1995). 
Finally, possibilities for future research on the basis 

of this study are as follows. Pure and simple shear 
boxes have been widely used in scaled and unscaled 
models of mechanical instabilities with geological 
significance (folds, mullions, boudins, etc.). The study 
of these shearing instabilities may be expanded by using 
robust designs of the Taylor flow apparatus, assembled 
with electromotors powerful enough to maintain flow in 
high viscosity polymers like the transparent SGM36 
which is suitable for detailed strain studies (Weijermars, 
1988b). The rheology of SGM36 and other polymers 
suitable for flow studies are documented in detail 
elsewhere (Weijermars, 1986a+). The Taylor mill 
allows modelling, not only of pure and simple shear 
deformation, but of all possible cases of plane deforma- 
tion. There are also new opportunities for modelling the 
deformation of inclusions of various shapes and a range 
of relative competence contrasts with the host material. 
In addition, the Taylor mill may be an excellent 
teaching aid in structural geology. 
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